Braidings on the Category of Bimodules, Azumaya Algebras and Epimorphisms of Rings

نویسندگان

  • A. L. Agore
  • Stefaan Caenepeel
  • G. Militaru
چکیده

Let A be an algebra over a commutative ring k. We prove that braidings on the category of A-bimodules are in bijective correspondence to canonical R-matrices, these are elements in A⊗A⊗A satisfying certain axioms. We show that all braidings are symmetries. If A is commutative, then there exists a braiding on AMA if and only if k → A is an epimorphism in the category of rings, and then the corresponding R-matrix is trivial. If the invariants functor G = (−) : AMA → Mk is separable, then A admits a canonical R-matrix; in particular, any Azumaya algebra admits a canonical R-matrix. Working over a field, we find a remarkable new characterization of central simple algebras: these are precisely the finite dimensional algebras that admit a canonical R-matrix. Canonical R-matrices give rise to a new class of examples of simultaneous solutions for the quantum Yang-Baxter equation and the braid equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lista De Lucrari Stiintifice Si Citari

1.1. Articole publicate in reviste cotate ISI. [1] A.L. Agore, G. Militaru, Unified products for Leibniz algebras. Applications, 25 pagini, Linear Algebra and its Applications, DOI: 10.1016/j.laa.2013.07.021. (IF 2012: 0,968; AIS 2012: 0,582) [2] A.L. Agore, G. Militaru, Extending structures for Lie algebras, 24 pagini, Monatshefte für Mathematik, DOI: 10.1007/s00605-013-0537-7. (IF 2012: 0,698...

متن کامل

Module and Comodule Categories - a Survey

The theory of modules over associative algebras and the theory of comodules for coassociative coalgebras were developed fairly independently during the last decades. In this survey we display an intimate connection between these areas by the notion of categories subgenerated by an object. After a review of the relevant techniques in categories of left modules, applications to the bimodule struc...

متن کامل

Azumaya Monads and Comonads

The definition of Azumaya algebras over commutative rings R requires the tensor product of modules over R and the twist map for the tensor product of any two R-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in these settings. Here, we introduce Azumaya monads on any category A by considering a monad (F,m, e) on A endowed with a dis...

متن کامل

On categories of merotopic, nearness, and filter algebras

We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...

متن کامل

2 00 6 Bar categories and star operations

We introduce the notion of 'bar category' by which we mean a monoidal category equipped with additional structure induced by complex conjugation. Examples of our theory include bimodules over a *-algebra, modules over a conventional Hopf *-algebra and modules over a more general object which call a 'quasi-*-Hopf algebra' and for which examples include the standard quantum groups u q (g) at q a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2014